Hydrogen bond formation between the naturally modified nucleobase and phosphate backbone

نویسندگان

  • Jia Sheng
  • Wen Zhang
  • Abdalla E. A. Hassan
  • Jianhua Gan
  • Alexei S. Soares
  • Song Geng
  • Yi Ren
  • Zhen Huang
چکیده

Natural RNAs, especially tRNAs, are extensively modified to tailor structure and function diversities. Uracil is the most modified nucleobase among all natural nucleobases. Interestingly, >76% of uracil modifications are located on its 5-position. We have investigated the natural 5-methoxy (5-O-CH(3)) modification of uracil in the context of A-form oligonucleotide duplex. Our X-ray crystal structure indicates first a H-bond formation between the uracil 5-O-CH(3) and its 5'-phosphate. This novel H-bond is not observed when the oxygen of 5-O-CH(3) is replaced with a larger atom (selenium or sulfur). The 5-O-CH(3) modification does not cause significant structure and stability alterations. Moreover, our computational study is consistent with the experimental observation. The investigation on the uracil 5-position demonstrates the importance of this RNA modification at the atomic level. Our finding suggests a general interaction between the nucleobase and backbone and reveals a plausible function of the tRNA 5-O-CH(3) modification, which might potentially rigidify the local conformation and facilitates translation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A theoretical study on quadrupole coupling parameters of HRPII Protein modeled as 310-helix & α-helix structures

A fragment of Histidine rich protein II (HRP II 215-236) was investigated by 14N and 17O electric field gradient, EFG, tensor calculations using DFT. This study is intended to explore the differences between 310-helix and α-helix of HRPII both in the gas phase and in solution. To achieve the aims, the 17O and 14N NQR parameters of a fragment of HRPII (215-236) for both structures are calculated...

متن کامل

On the mechanism of RNA phosphodiester backbone cleavage in the absence of solvent

Ribonucleic acid (RNA) modifications play an important role in the regulation of gene expression and the development of RNA-based therapeutics, but their identification, localization and relative quantitation by conventional biochemical methods can be quite challenging. As a promising alternative, mass spectrometry (MS) based approaches that involve RNA dissociation in 'top-down' strategies are...

متن کامل

Fluorescence and electrochemical detection of pyrimidine/purine transversion by a ferrocenyl aminonaphthyridine derivative.

A novel hydrogen bond-forming ligand for pyrimidine/purine transversion, which contains both a fluorescent naphthyridine moiety and a ferrocenyl group as an electrochemical indicator, is described. Hydrogen bond-mediated recognition for a target nucleobase at an abasic site in a DNA duplex is confirmed by both fluorescence and electrochemical measurements. The analysis by fluorescence titration...

متن کامل

Monitoring Backbone Hydrogen-Bond Formation in β-Barrel Membrane Protein Folding.

β-barrel membrane proteins are key components of the outer membrane of bacteria, mitochondria and chloroplasts. Their three-dimensional structure is defined by a network of backbone hydrogen bonds between adjacent β-strands. Here, we employ hydrogen-deuterium (H/D) exchange in combination with NMR spectroscopy and mass spectrometry to monitor backbone hydrogen bond formation during folding of t...

متن کامل

Chemical probing of RNA with the hydroxyl radical at single-atom resolution

While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5'-carb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012